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Lateral instability in normal viscous fingers
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We study a low-amplitude, long-wavelength lateral instability of the Saffman-Taylor finger by means of a
phase-field model. We observe such an instability in two situations in which small dynamic perturbations are
overimposed to a constant pressure drop. We first study the case in which the perturbation consists of a single
oscillatory mode and then a case in which the perturbation consists of temporal noise. In both cases the
instability undergoes a process of selection.
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I. INTRODUCTION [19]. Recently, fluctuations along the finger sides have been

Branching is an ubiquitous process in natfte4]. From reportgd in normal fingers for low capillary numbers and
plants, rivers, blood vessels, and bacterial colonies to der€ry wide and long channe[20]. _
dritic growth, the universality of branching has been put for- A Wwide variety of problems, which include biorheology
ward. In crystal growth, when an undercooled melt solidifies,and oil recovery, involve the dynamics of confined fluids in
the solid front has a parabolic shape; lateral protrusionsfrequency-dependent flow regimes. Due to its relative sim-
called sidebranches, form on the main structure and grow iflicity, the Saffman-Taylor finger is an archetype of both
amplitude as they are advected away from the parabolic tipeattern-forming systems and two-phase flow in confined sys-
This phenomenon has been widely investigated in solidificatems[21]. We are, therefore, interested on the response of the
tion. It has been proposed, both experiment@by6] and  Saffman-Taylor finger to a controlled frequency-dependent
theoretically[7-9] that sidebranching results from selective flow.
amplification of natural noise. Here we report a lateral instability of the normal Saffman-

Natural noise, that is, noise unintentionally present in thelaylor finger induced dynamically in a controlled manner.
system, is not enough to create sidebranching in normalVe also propose for which frequencies and cell dimensions
Saffman-Taylor fingers. Normal Saffman-Taylor fingers ap-this instability can be more easily experimentally observed.
pear when an inviscid fluid displaces a viscous fluid in aBy means of a phase-field model, we study two cases. The
Hele-Shaw cell, a pair of glass plates parallel to each othéfirst one, in which an oscillatory signal is overimposed to a
that form an almost two-dimensional channel in which theconstant pressure gradient, leads to a strictly periodic lateral
flow takes place. In the absence of perturbations, Saffmarinstability that undergoes a process of selection. We then
Taylor fingers are always greater than half of the channestudy the effect that dynamic noise has on the finger shape
width. We refer to these steady-state fingers as norma@nd observe a similar lateral instability. This one, despite its
Saffman-Taylor fingers, to be able to differentiate them fromnonperiodicity, undergoes a process of selection as in the first
anomalous fingers, whose width is less than half of the chartase.
nel width and that are observed when anisotropy is imposed
on the system. In anomalous Saffman-Taylor fingers, den-
drites have been observed using localized disturbances, sudh PHASE-FIELD MODEL AND MACROSCOPIC MODEL
as a bubble placed at the finger tip or a thread placed along
the channe10,11]. In both dendritic crystals and anomalous  Recent studies indicate that the Saffman-Taylor problem
fingers, it has been shown that periodic forcing induces pefor Newtonian fluids can be successfully studied by means of
riodic sidebranche$12-14. Experimentally, sidebranches phase-field model22—24. The main advantage of such me-
have been observed in viscous fingers for miscible fluids in @oscopic approaches is that they avoid complicated methods
radial cell when anisotropy is imposed on the system byfor tracking the interface. In particular, it has been found that
engraving a grid on one of the platgls,16. For immiscible  a single-order-parameter equation suffices to reproduce the
fluids, sidebranches are strongly suppressed by surface temacroscopic equations of the Saffman-Taylor problem in the
sion, and a low-amplitude lateral instability can be observednfinite-viscosity-contrast limit[24]. Moreover, numerical
[17]. Theoretically, viscous fingers in the radial cell with simulations of this model have reproduced the behavior of
fourfold anisotropy have been studied in Rdf8]. In agree-  the fluid-fluid interface, from destabilization and mode com-
ment with experiments, regimes for which fingers have latpetition to the formation of the steady state. We therefore
eral instabilities, whose amplitude is strongly suppressed byecide to use the phase-field model of REg#4] with a
surface tension, are found. Localized nonlinear instabilitiedoundary condition modified to allow for dynamic pressure
of the normal Saffman-Taylor finger have also been reportedrops.
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¢ . sure drop at the interface; is the surface tension, andis

O | the local curvature of the interfack=b?/ 127 is commonly
known as the permeability of the system.

In order to recover the macroscopic equations from the
mesoscopic equations, a matched asymptotic expansion is
necessary and the following identification of parameters has

0 to be made:p=geqrs, K=M/2¢%, and y=gefy'/Ad),
whereu, is the first order ire term of the chemical potential,
o ——— ] ¢o is the zero order ire term of the order parameted ¢
=2¢eq beqis the bulk value for the order parameter in equi-
b, T Y ] librium, andy’ =7 (d¢y!/ ow)dw. The variablew is an inner
Vit Vo y coordinate of the interface, which is introduced in the expan-

sion, and that is, at any point, perpendicular to it.

FIG. 1. Profile for the order parameter along the flow direction It is worth to note that in order to study the effect of a
for the initial boundary condition. The flow takes place from the dynamic pressure drop on the Saffman finger shape, the pres-
right to the left. sure gradient should contain a constant term responsible for

the finger formation. That is, the pressure gradient should be,

The mesoscopic equation to be solved for the infinite-2t any time, negative SO the fluid-fluid interface remains un-
viscosity-contrast Saffman-Taylor problem is the equation oft@Ple. Moreover, the time-dependent term of the pressure
Model B gradient should be small compared to the constant term of

the pressure gradient because we are interested in studying
dp situations in which the single-finger solution exists. In our
e VMV ()], @) model, the above considerations are implemented by taking
the boundary conditio(B) for the order parameter in front of
where ¢ is an order parameter and(¢) is a chemical po-  the finger as a constant plus a dynamic term of the form
tential that has the explicit form

w(P)=— ¢+ ¢ - €%, 2 Pp(t) = Pgo + 59(1), 7

where € is a parameter proportional to the interface width.
The parameteM has a constant value in the viscous fluid
and is zero in air. The following boundary condition is im-
posed at the bulk of the displaced fluid,

whereg(t) is a time-dependent dimensionless function that
varies between -1 and 1 and will be considered in two dif-
ferent ways as explained below, adds an amplitude that is
small compared t@gq. In the two cases described below, we
DXY =< Yiip = 1,1) = ¢g(1). (3)  have carried on the numerical integration of E). subject

. ) . . to the proper dynamic boundary condititf). We have used
Equation(3) fixes the bulk valuegg(t) at an arbitrary dis- 5 £yjer method for a discrete square lattice of sige n,

tancel from the fingertip.yﬂp cor(esponds to the most ad- \yith mesh sizeAx=1 and time step\t=0.01.n, has been
vanced point of the interface. This creates a ramp that represygsen to be,=32 in all cases, and,, which is the dimen-
sents the driving force of the system. The initial boundaryg;s, along which the finger propag)éltes, has been chosen in

condition to generate a steady-state finger is shown in Fig. 1g,ch 5 way that the lateral instability is well developed. It
Despite their simplicity, these equations describe the hydrog|| pe specified in each case.

dynamic equations of the macroscopic problem in the sharp
interface limit.
The macroscopic equations of the problem are Laplace’s [ll. NATURAL FREQUENCIES

equation for the pressurg i.e., o o _ _
Before describing the dynamic signals considered in the

V?p=0, (4) present paper, it is convenient to remember that there are two
which is written from Darcy’s Law plus the incompressibil- Natural frequencies of the steady-state problem. The first
characteristic frequency of the steady-state problem is the

ity of fluids, and the boundary conditions at the fluid-fluid o i d X .
interface; that is, the continuity boundary condition and thellN9er velocity divided by the finger width, which gives an

local thermodynamic equilibrium condition, i.e., angular frequency equal to
2
b U

12 Vp-f, (5) Ofinger= 2. (8)

Up=

Ap==yx, 6) The other frequency characteristic of the steady-state prob-
where v, is the normal velocity of the interface; is the lem is the one determined by the flow very far from the
viscosity of the viscous fluidh is the gap between the cell finger tip, that is, the flow velocity at infinity divided by the
plates,n is a vector normal to the interfacAp is the pres- channel width, which gives an angular frequency equal to
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t FIG. 4. Response frequency measured close to the fingertip plot-

ted against incident frequency. For reference, the selected frequency
FIG. 2. Bulk valuegg and finger widths measured at distances s indicated in the coordinate axis as a circle. The natural frequen-
L, andL, from the fingertip plotted vs time. The mode selection cies of the floww., (triangle and Wfinger (SQUarg are indicated in
process has taken place in between the second and third plots. Tkg abscissa axis.
output signal frequencie&;L1 and w, are determined from the pe- )
riods T andT_ . The incident frequency i®=0.007. are no _Ionger flat, as in the s_teady-state case, but develop an
instability. In order to quantify the process of growth, the
finger width is measured simultaneously at two different dis-
W, = 277&_ (9)  tances from the fingertih; andL,. Due to the growth pro-

w cess, variations on the finger width measured at distapce
close to the finger tip, have a much smaller amplitude than
He ones measured at distarice far from the finger tip.
Figure 2 illustrates the behavior of the finger width at dis-
tanced ; andL, as a function of time. The incident signal on
the boundary condition of the bulk order parameter has also
been plotted in order to show that the incident frequency and

These two frequencies are related to each other because ¢
servation of matter implies that the finger velocity times the,
finger width is equal to the velocity at infinity; that, g\
=V..

the response frequency close to the fingertip are the same;
V. NUMERICAL RESULTS thus the wave generated at the finger tip responds linearly to
A. Oscillatory pressure drop the incident signal. It can also be observed that at a distance

far from the tip, the frequency of the lateral instability no
longer follows the incident signal; in fact, it undergoes a
dynamic process as will be discussed below. Just as with the
frequency close to the fingertip, the wavelength of the lateral
g(t) = cogwt). (10) instability has a Iinear beh_ayior; that is, it. cqrresponds to the
average finger velocity divided by the incident frequency.
The initial condition consists of &(x,y) profile that corre-  However, as the wave travels away from the tip toward the
sponds to a steady-state finger. The paramefggsand 6 in  sides of the finger, the wavelength of the instability coarsens
Eqg. (7) have been set equal t,=-0.6 ands=0.09. and reaches a value that is independent of the incident fre-
As the bulk value ofgg(t) oscillates, the finger responds quency. This happens for a very wide range of incident fre-
by generating a wave on its tip. This wave is advected fafuencies, that is, the lateral instability undergoes a mode
from the fingertip in such a way that the sides of the fingerselection process.

The dynamic part of the incident signal consists of a
single-mode oscillatory term. That Ht) of the boundary
condition(7) is
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FIG. 3. Finger profiles with lateral instabilitieg) The profile at the top is obtained when introducing an oscillatory perturbation in the
pressure drop. In this case, the instability remains strictly periodic. For this simulaje8200.(b) The profile at the bottom corresponds
to a pressure drop with superimposed noise in time. As a result a nonperiodic instability develops. For this simyr=liooo.
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FIG. 5. Response frequency measured far from the fingertip FIG. 6. Linear and transition zones of the , vs » curve.
plotted against incident frequency. For a wide range of frequencie€ircles correspond to simulation results and crosses represent the
mode selection occurs. The symbols on the axis are as in Fig. 4. double of the observed frequency;LZZ, which fall on the diagonal

and make evident that the first harmonic of the incident signal has

In our problem, the frequency selected for the lateral in-grown. The symbols on the axes correspond to the same frequencies
stability is roughly the characteristic frequency of the flowas in Fig. 4.
far from the finger tipw., given by Eq.(9). The amplitude of
the selected mode saturates and is small compared to t
finger width. Also it is a longwavelength instability as will be
discussed. Therefore, the lateral instability does not have

dramatic visual effect on the finger as does the instabili derstand this behavior if we think that in this region, surface

which causes sidebranching in solidification. However, ittension is large enouah 1o suporess the incidgnt f’re uenc

causes the finger to have small perturbations on its width, g 9 ppress req! Y,
ut not large enough to suppress its first harmonic. Finally,

The instability is shown in Fig. (@) on a 1:1 scale in order to e ;
realize the actual size of the width variations that would be'c 5¢€ that for incident frequencies larger that the character-

observable in an experiment. Irst'atlsC ;Les(lufigcﬁecr)lfcthig imgegﬁrégéh? (ID\ﬁEebi}rllcliEd%rgﬁ‘,rethSenc ;
Figure 4 shows how the frequency of the lateral inSt"jlbi"tythef)e is a mgde thgt is selepcted because it grows fas(,qter ch,n
close to the ﬁngertipw,_l is the same as the incident fre- 9

: : . the others. The selected frequency determines the wave-
quencyw; that is, 0 = o. This frequency is measured from

. . X . ~ ) length of the lateral instability.
the signal periodT,, with the relationw,,=27/T,,. This It is important to note that the lateral instability appears,

linear response close to thg finger.tip, has been observed fgy many cases, far from the finger tip. For instance, in the
all of the incident frequencies studield, has been set equal regjon of incident frequencies where selection is observed,
to L;=40Ax. ) ] ~ the amplitude of the lateral instability saturates at a distance
The process of frequency selection far from the finger titof the order of ten times the cell width and is very small
is shown in Fig. 5. The frequency of the lateral instability ¢|gse to the finger tip. See Fig(e&8. For the linear and the
o, has the same value for a wide range of incident frequenygnsition zonegFig. 7), the distance from the tip at which
cies. This frequency is slightly larger than the characteristighe lateral instability is observed is much smaller as will be
frequency of the flow at infinity given in Eq9). The fre-  discussed later. The distancghas been chosen in each case
quency is measured from the signal peridd using w,,  as to measure the instability once the amplitude has satu-
=277/T,_2. The continuous line is shown for reference and israted.
the line that would correspond to linear response. We can One might wonder how does the amplitude of this insta-
clearly see that there are three regimes for the response frbility depend on the amplitude of the incident signal. Our
guency. First, at very low incident frequencies, the responseesults indicate that close to the finger tip, the larger the
frequency is always equal to the incident frequency. In thissmplitude of the incident signal, the larger the amplitude of
region, surface tension is not enough to suppress the mod#se instability. This can be seen in Fig. 8. However, far from
that cause a perturbation to the sides of the finger. Seconthe finger tip, we find that the saturation value for the ampli-

rtiigere is a range of frequencies for which there is a behavior

bétween linear response and selection. In this range of tran-
ition, the response frequency corresponds in all cases to half

fr‘we incident frequency. This is shown in Fig. 6. We can un-
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FIG. 7. The profile at the top corresponds to an incident frequency that falls in the linear regiom@g trsaw curve, whereas the profile
at the bottom corresponds to a frequency that falls in the transition region of the same curve. The digtaneghich the amplitude
saturates is of the order df~ A andds=~2A, respectively. These are regimes that would be easier to observe experimentally.
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signal.
FIG. 10. Normalized distribution of response frequencies for an
incident signal consisting of temporal noise. For the simulatibn,

tude of the instability is independent of the amplitude of the:o.os. For reference, the characteristic frequency of the @ovis

?nc?dent s_ignal. Moreover, the §maller the amplit.ude of t,heindicated in the coordinate axis with a triangle.
incident signal, the larger the distance from the tip at which

the amplitude saturates, and, therefore, the harder it becomes _ .
to observe it experimentally. rom the tip, and it reaches an almost constant value. From

the initial random perturbation, some modes grow and some

modes decay as the perturbation propagates far from the tip.
B. Temporal noise In Fig. 9, we show the driving signal consisting of white

Results of the previous section indicate that the systen'?oIse overimposed to a constant va_Iue of the bu.lk °fdeY pa-
: gameter. We then show the oscillations of the finger width

For linear equations, this would indicate that the system act lose to thg tip in which some O.f the modes ha.“’e alrgady
cayed. Finally, we see the oscillations of the finger width

as a selective noise amplifier. Nevertheless, our phase-fie 0 rom the tip in which some of the modes have arown and
equations contain the full nonlinear behavior of the hydrody- P 9

namic equations. We therefore decided to study the effect otpe amplitude of the oscillations has_ re_ach_ed an almost con-
a dynamic signal consisting of white noise, which contains ast_ant value. The final state has a dlstrlbutm_n .Of frequencies
combination of several modes ’ with a peak at a value close to the characteristic frequency of

We perturb the system by adding a random signal to éhe flow at infinity, that is, close to the value of the frequency

constant pressure gradient at each time step. In our mod(%ilected in the oscillatory case. This can be seen in Fig. 10.

L : . ) is indicates that, despite the nonperiodicity of the lateral
this is implemented by choosirgft) in Eq. (7) to be a ran instability, it undergoes a process of mode selection. Figure

g?rgi2ug:qb((a;)bi:t\évﬁssne;ltoaggs_loaggach time step. The vaIu&b) shows the nonperiodic lateral instability for a finger
' R ith temporal noise.

Just as in the oscillatory case, the finger develops a laterd
instability, which is born close to the finger tip, and propa-
gates toward the sides of the finger. The amplitude of the V. DISCUSSION
lateral instability grows as the perturbation propagates away |, ihe laboratory frame of reference, once the amplitude

of the instability saturates, the shape remains stationary.

LUl From the tip frame of reference, the instability propagates far
o058 from the tip with a velocity equal to the average finger ve-
082 locity U. Therefore, the expected wavelength of the instabil-
-066 ity is given by

100000 120000 140000 160000
A, (105233 U
Ly A= . (11)
0.5232 Vselected
05231 The frequency selected for this long-wavelength lateral in-
100000 120000 140000 160000 stability is roughly the characteristic frequency of the system
A (1) 28 at infinity; that is,v,,=V../W, therefore,
0.56
. u w
05 Vo A
100000 120000 140000 ; 160000

For fast normal fingers the finger width is close to half of the

FIG. 9. Time dependence for the bulk value of the order paramchannel width, soA~=0.5. This means that the expected
eter and of the finger width at distandesandL, for the temporal ~ wavelength for the lateral instability is close to twice the cell
noise case. For the simulatiofs0.05. width, A=2W. The instability that we are reporting is a
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long-wavelength instability. This fact by itself implies the A, 0005
need for long channels, but there is another element to be 0.004
considered. From simulations, we observe that for fingers 0.003
driven by an oscillatory signal in the selection zone, with an 0002
incident amplitude of6=0.09, the distances at which the 0001 o Yo oo swsts o

amplitude saturates id;=~10W. This means that, not only
will the wavelength of the in ili lar it wi
Iongt fgr tﬁeeirfstg:)ili?y ttoeap;ziabr. It:yo?eex?ir?%l:, uizltavxme;[(%keeri_ FIG. 11. Amplitude of.the in_stability _close to the finger tip as a
ment with a cell 10 cm wide, the distance from the finger tipfunction of the average finger-tip velocity.

in which the lateral instability would be observable would be

of the order of 1 m and the wavelength of the lateral insta- ) ] ]

bility of the order of 20 cm. This fact becomes worse for theb® needed in order to observe fluctuations. One thing that
studied case of temporal noise because, in this case, the aiffers between the experiments reported in R26] and our
plitude of the incident signal used wa%=0.05 [see Fig. numerical integration is the distance from the tip at which
3(b)]. In this case the distancgy at which the amplitude fluctuations are observable, this one being larger for the nu-
saturates igls=~20W, which in our previous example of cell merical integration. We are currently studying the possibility

dimensions, would imply that the distance from the finger tipof such a discrepancy being related to the presence of small
in which the lateral instability would be observable would bespatial variations present in the cell, but this is out of the

of the order of 2 m. This is why this lateral ir!stab_ility has not scope of the present paper.
been observed for most of experimental situations reported ¢ experiments were to be conducted for an oscillatory

in literature, even when natural noise is always present O'Bressure drop, the following considerations should be taken

the SVSte'.””- . into account. For oscillatory fingers, selection is observed for
There is one experiment reference that does report I""ter']"rlmident frequencies larger than the characteristic frequenc
fluctuations in normal Saffman fingel80]. The cells in this d g q y

case were very wide and very long. We believe that sucﬁnc the. fing_ervﬁnger=U/)\W. Therefore, in order to opserve

lateral fluctuations are related to the instability reported here>€/€ction, it would be necessary to apply frequencies larger
thus, we make a comparison to the extent possible. For larg@@n ¥finger ON the other hand, the linear and transition re-
aspect ratiod\V/b fluctutations are more easily visible for all 9imes of the oscillatory fingers are not as hard to observe.

flow rates, so we compare our computed expected wavd:or instance, for the oscilla_\tory case Wiﬂ:O_.OQ, the dis-
length for the instability to the experiment results of this {@nceds at which the amplitude saturates, in terms of the

case. Take for example the finger in Figc)Lof Ref. [20]. v.vavelength for the instability, is of the order df= A for_the
For this finger, a channel of widttW~ 20 cm was used and linear regime and of the.ord_er af~2A for theT transition
the fraction of the channel occupied by the finger wasZOn€: This can be seen in Fig. 7. Therefore, in order to ob-
roughly A ~0.5. According to our calculations, this should S€TVe the linear regime of the lateral instability, it would be
give an expected wavelength of the order df40 cm, enough tq a_pply gn_mmdent frequep_cy close to the frequency
which is roughly what can be visually measured from thecharactenspc .of infinity. The_ transition zone should be ob.—
experimental figure. The finger, however, is not long enough?erved for mudent frequencies bet_vveen the two characteris-
to allow for comparison to our frequency distribution be- ti¢ frequencies of the system, that is, betweerand vfinger
cause, despite having the longest channels reported in litera-
ture, the wavelength of the instability is also very long,
therefore, there are only 5 or 6 appreciable maxima. VI. CONCLUSIONS

Another result of our numerical integration that agrees
with the experiment results of Rd0] is that the larger the An oscillatory signal overimposed on a constant pressure
velocity of finger propagation, the more stable the tip is.gradient produces a low-amplitude, long-wavelength lateral
What happens, according to our studies, is that the distandastability on normal Saffman-Taylor fingers. The instability
at which the instability saturates is larger for larger veloci-undergoes a mode selection process and reaches a final state
ties. Therefore, close to the finger tip, the finger looks morewith a shape of a single finger whose sides have low-
similar to the steady-state finger. Just as mentioned in Reémplitude strictly periodic undulations. The selected fre-
[20], our numerical integration indicates that even when thequency corresponds roughly to the characteristic frequency
finger tip appears exactly like the classical Saffman-Taylof the system at infinity. This implies that the selected wave-
finger, with sufficient resolution fluctuations can still be mea-length of the lateral instability for fast fingers will be close to
sured close to the finger tip for all velocities. In order to twice the channel width. Also, the distance from the tip for
illustrate this point we plot the amplitude of the oscillations the lateral instability to appear is several times the expected
close to the finger tip versus tip velocity in Fig. 11. We canwavelength. So in order to observe this, very long channels
see that the larger the velocity, the smaller the amplitude oére necessary. For low frequencies, there is a linear regime in
the oscillations. On the other hand, far from the finger tip,which the response frequency is the same as the incident
our results indicate that the amplitude of the instability isfrequency and a transition zone for which the response fre-
independent of finger velocity. These results imply that forquency is half of the incident frequency. For these cases, it
the experimental cases in which the finger tip appears likshould be easier to observe the instability because the dis-
the classical Saffman-Taylor finger, longer channels wouldance from the tip for the instability to be observable is of the
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order of once or twice the expected wavelength. When temto understand results from Ref20], further studies are
poral noise is added to the system, the same lateral instabilityeeded.

is observed. The distribution of frequencies has a peak at

frequency close to the frequency selected in the oscillatory

a
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